References

Ai, C., & Norton, E. C. (2003). Interaction terms in logit and probit models. Economics Letters, 80, 123–129.

Anderson, E. W., Potter, K. C., Matzen, L. E., Shepherd, J. F., Preston, G. A., & Silva, C. T. (2011). A user study of visualization effectiveness using eeg and cognitive load. In Proceedings of the 13th eurographics / ieee - vgtc conference on visualization (pp. 791–800). Chichester, UK: The Eurographs Association; John Wiley & Sons, Ltd. https://doi.org/10.1111/j.1467-8659.2011.01928.x

Anscombe, F. (1973). Graphs in statistical analysis. American Statistician, 27, 17–21.

Arnold, J. B. (2017). Ggthemes: Extra themes, scales and geoms for ’ggplot2’. Retrieved from https://CRAN.R-project.org/package=ggthemes

Baddeley, A., Turner, R., Rubak, E., Kasper Klitgaard Berthelsen; Ottmar Cronie; Yongtao Guan; Ute Hahn; Abdollah Jalilian; Marie-Colette van Lieshout; Greg McSwiggan; Tuomas Rajala; Suman Rakshit; Dominic Schuhmacher; Rasmus Waagepetersen; M. Adepeju; C. Anderson; Q.W. Ang; M. Austenfeld; S. Azaele; M. Baddeley; C. Beale; M. Bell; R. Bernhardt; T. Bendtsen; A. Bevan; B. Biggerstaff; A. Bilgrau; L. Bischof; C. Biscio; R. Bivand; J.M. Blanco Moreno; F. Bonneu; J. Burgos; S. Byers; Y.M. Chang; J.B. Chen; I. Chernayavsky; Y.C. Chin; B. Christensen; J.-F. Coeurjolly; K. Colyvas; R. Constantine; R. Corria Ainslie; R. Cotton; M. de la Cruz; P. Dalgaard; M. D’Antuono; S. Das; T. Davies; P.J. Diggle; P. Donnelly; I. Dryden; S. Eglen; A. El-Gabbas; B. Fandohan; O. Flores; E.D. Ford; P. Forbes; S. Frank; J. Franklin; N. Funwi-Gabga; O. Garcia; A. Gault; J. Geldmann; M. Genton; S. Ghalandarayeshi; J. Gilbey; J. Goldstick; P. Grabarnik; C. Graf; U. Hahn; A. Hardegen; M.B. Hansen; M. Hazelton; J. Heikkinen; M. Hering; M. Herrmann; P. Hewson; K. Hingee; K. Hornik; P. Hunziker; J. Hywood; R. Ihaka; C. Icos; A. Jammalamadaka; R. John-Chandran; D. Johnson; M. Khanmohammadi; R. Klaver; P. Kovesi; L. Kozmian-Ledward; M. Kuhn; J. Laake; F. Lavancier; T. Lawrence; R.A. Lamb; J. Lee; G.P. Leser; H.T. Li; G. Limitsios; A. Lister; B. Madin; M. Maechler; J. Marcus; K. Marchikanti; R. Mark; J. Mateu; P. McCullagh; U. Mehlig; F. Mestre; S. Meyer; X.C. Mi; L. De Middeleer; R.K. Milne; E. Miranda; J. Moller; M. Moradi; V. Morera Pujol; E. Mudrak; G.M. Nair; N. Najari; N. Nava; L.S. Nielsen; F. Nunes; J.R. Nyengaard; J. Oehlschlaegel; T. Onkelinx; S. O’Riordan; E. Parilov; J. Picka; N. Picard; M. Porter; S. Protsiv; A. Raftery; S. Rakshit; B. Ramage; P. Ramon; X. Raynaud; N. Read; M. Reiter; I. Renner; T.O. Richardson; B.D. Ripley; E. Rosenbaum; B. Rowlingson; J. Rudokas; J. Rudge; C. Ryan; F. Safavimanesh; A. Sarkka; C. Schank; K. Schladitz; S. Schutte; B.T. Scott; O. Semboli; F. Semecurbe; V. Shcherbakov; G.C. Shen; P. Shi; H.-J. Ship; T.L. Silva; I.-M. Sintorn; Y. Song; M. Spiess; M. Stevenson; K. Stucki; M. Sumner; P. Surovy; B. Taylor; T. Thorarinsdottir; L. Torres; B. Turlach; T. Tvedebrink; K. Ummer; M. Uppala; A. van Burgel; T. Verbeke; M. Vihtakari; A. Villers; F. Vinatier; S. Voss; S. Wagner; H. Wang; H. Wendrock; J. Wild; C. Witthoft; S. Wong; M. Woringer; M.E. Zamboni, H. W. A. contributions by, & Zeileis., A. (2017). Spatstat: Spatial point pattern analysis, model-fitting, simulation, tests. Retrieved from https://CRAN.R-project.org/package=spatstat

Bateman, S., Mandryk, R., Gutwin, C., Genest, A., McDine, D., & Brooks, C. (2010). Useful junk? The effects of visual embellishment on comprehension and memorability of charts. In ACM conference on human factors in computing systems (chi 2010) (pp. 2573–2582). Atlanta, GA, USA.

Bates, D., & Maechler, M. (2015). MatrixModels: Modelling with sparse and dense matrices. Retrieved from https://CRAN.R-project.org/package=MatrixModels

Bates, D., & Maechler, M. (2017). Matrix: Sparse and dense matrix classes and methods. Retrieved from https://CRAN.R-project.org/package=Matrix

Bertin, J. (2010). Semiology of graphics. Redlands, CA: ESRI Press.

Borkin, M. A., Vo, A. A., Bylinskii, Z., Isola, P., Sunkavalli, S., Oliva, A., & Pfister, H. (2013). What makes a visualization memorable? IEEE Transactions on Visualization and Computer Graphics (Proceedings of InfoVis 2013).

Brambor, T., Clark, W., & Golder, M. (2006). Understanding interaction models: Improving empirical analyses. Political Analysis, 14, 63–82.

Brownrigg, R. (2017). Maps: Draw geographical maps. Retrieved from https://CRAN.R-project.org/package=maps

Brundson, C., & Comber, L. (2015). An introduction to R for spatial analysis and mapping. Londin: Sage.

Bryan, J. (2017). Gapminder: Data from gapminder. Retrieved from https://CRAN.R-project.org/package=gapminder

Cairo, A. (2013). The functional art: An introduction to information graphics and visualization. Berkeley: New Riders.

Chakrabarti, R., Haughwout, A., Lee, D., Scally, J., & Klaauw, W. van der. (2017, April). Press briefing on household debt, with a focus on student debt. Federal Reserve Bank of New York.

Chang, W. (2013). R graphics cookbook. O’Reilly Media, Inc.

Chatterjee, S., & Firat, A. (2007). Generating data with identical statistics but dissimilar graphics: A follow up to the anscombe dataset. American Statistician, 61, 248–254.

Cleveland, W. S. (1993). The elements of graphing data. Hobart Press.

Cleveland, W. S. (1994). Visualizing data. Hobart Press.

Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association, 79, 531–534.

Cleveland, W. S., & McGill, R. (1987). Graphical perception: The visual decoding of quantitative information on graphical displays of data. Journal of the Royal Statistical Society Series A, 150, 192–229.

Codd, E. F. (1990). The relational model for database management: Version 2. Boston, MA: Addison-Wesley Longman Publishing.

Dalgaard, P. (2008). Introductory statistics with R (Second edition). New York: Springer.

Davies, T. M. (2016). The book of r. San Francisco: No Starch Press.

Doherty, M. E., Anderson, R. B., Angott, A. M., & Klopfer, D. S. (2007). The perception of scatterplots. Perception & Psychophysics, 69, 1261–1272.

Eddelbuettel, D. (2018). Tint: ’Tint’ is not ’tufte’. Retrieved from https://CRAN.R-project.org/package=tint

Few, S. (2009). Now you see it: Simple visualization techniques for quantitative analysis. Oakland, CA: Analytics Press.

Fox, J. (2014, December). The rise of the y-axis-zero fundamentalists. https://byjustinfox.com/2014/12/14/the-rise-of-the-y-axis-zero-fundamentalists/.

Freedman Ellis, G. (2017). Srvyr: ’Dplyr’-like syntax for summary statistics of survey data. Retrieved from https://CRAN.R-project.org/package=srvyr

Friendly, M., & Meyer, D. (2017). Discrete data analysis with r. Boca Raton, FL: CRC/Chapman; Hall.

Garnier, S. (2017a). Viridis: Default color maps from ’matplotlib’. Retrieved from https://CRAN.R-project.org/package=viridis

Garnier, S. (2017b). ViridisLite: Default color maps from ’matplotlib’ (lite version). Retrieved from https://CRAN.R-project.org/package=viridisLite

Gelman, A. (2004). Exploratory data analysis for complex models. Journal of Computational and Graphical Statistics, 13, 755–779.

Gelman, A., & Hill, J. (2018). Regression and other stories. New York: Cambridge University Press.

Gould, S. J. (1991). Glow, big glowworm. In Bully for brontosaurus: Reflections in natural history (pp. 255–268). New York: W.W. Norton.

Harrell, F. (2016). Regression modeling strategies (Second). New York: Springer.

Healy, K. (2013). Kjhutils: Utility functions for data analysis.

Healy, K. (2018). Socviz: Utility functions and data sets for a short course in data visualization.

Healy, K., & Moody, J. (2014). Data visualization in sociology. Annual Review of Sociology, 40, 105–128.

Heer, J., & Bostock, M. (2010). Crowdsourcing graphical perception: Using mechanical turk to assess visualization design. In Proceedings of the sigchi conference on human factors in computing systems (pp. 203–212). New York, NY, USA: ACM. https://doi.org/10.1145/1753326.1753357

Henry, L., & Wickham, H. (2017). Purrr: Functional programming tools. Retrieved from https://CRAN.R-project.org/package=purrr

Hewitt, C. (1977). The effect of political democracy and social democracy on equality in industrial societies: A cross-national comparison. American Sociological Review, 42, 450–464.

Imai, K. (2017). Quantitative social science: An introduction. Princeton: Princeton University Press.

Isenberg, P., Bezerianos, A., Dragicevic, P., & Fekete, J.-D. (2011). A Study on Dual-Scale Data Charts. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2469–2487. https://doi.org/10.1109/TVCG.2011.238

Jackman, R. M. (1980). The impact of outliers on income inequality. American Sociological Review, 45, 344–347.

Koenker, R. (2017). Quantreg: Quantile regression. Retrieved from https://CRAN.R-project.org/package=quantreg

Koenker, R., & Ng, P. (2017). SparseM: Sparse linear algebra. Retrieved from https://CRAN.R-project.org/package=SparseM

Lander, J. P. (2018). Coefplot: Plots coefficients from fitted models. Retrieved from https://CRAN.R-project.org/package=coefplot

Leeper, T. J. (2017). Margins: Marginal effects for model objects. Retrieved from https://CRAN.R-project.org/package=margins

Lumley, T. (2004). Analysis of complex survey samples. Journal of Statistical Software, Articles, 9(8), 1–19. https://doi.org/10.18637/jss.v009.i08

Lumley, T. (2010). Complex surveys: A guide to analysis using R. New York: Wiley.

Lumley, T. (2013). Dichromat: Color schemes for dichromats. Retrieved from https://CRAN.R-project.org/package=dichromat

Lumley, T. (2017). Survey: Analysis of complex survey samples. Retrieved from https://CRAN.R-project.org/package=survey

Matloff, N. (2011). The art of r programming. San Francisco: No Starch Press.

Munzer, T. (2014). Visualization analysis and design. Boca Raton, FL: CRC Press.

Müller, K. (2017a). Bindrcpp: An ’rcpp’ interface to active bindings. Retrieved from https://CRAN.R-project.org/package=bindrcpp

Müller, K. (2017b). Here: A simpler way to find your files. Retrieved from https://CRAN.R-project.org/package=here

Müller, K., & Wickham, H. (2017). Tibble: Simple data frames. Retrieved from https://CRAN.R-project.org/package=tibble

Nakayama, K., & Joseph, J. S. (1998). Attention, pattern recognition and popout in visual search. In R. Parasuraman (Ed.), The attentive brain (pp. 279–298). Cambridge: MIT Press.

Neuwirth, E. (2014). RColorBrewer: ColorBrewer palettes. Retrieved from https://CRAN.R-project.org/package=RColorBrewer

Pebesma, E. (2017). Sf: Simple features for r. Retrieved from https://CRAN.R-project.org/package=sf

Pinheiro, J., Bates, D., & R-core. (2017). Nlme: Linear and nonlinear mixed effects models. Retrieved from https://CRAN.R-project.org/package=nlme

Qiu, Y., & See file AUTHORS for details. (2017a). Sysfonts: Loading fonts into r. Retrieved from https://CRAN.R-project.org/package=sysfonts

Qiu, Y., & See file AUTHORS for details. (2017b). Showtext: Using fonts more easily in r graphs. Retrieved from https://CRAN.R-project.org/package=showtext

R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Rensink, R. A., & Baldridge, G. (2010). The perception of correlation in scatterplots. Computer Graphics Forum, 29, 1203–1210.

Ripley, B. (2017). MASS: Support functions and datasets for venables and ripley’s mass. Retrieved from https://CRAN.R-project.org/package=MASS

Robinson, D. (2017). Broom: Convert statistical analysis objects into tidy data frames. Retrieved from https://CRAN.R-project.org/package=broom

Rudis, B. (2015). Statebins: U.S. State cartogram heatmaps in r; an alternative to choropleth maps for usa states. Retrieved from https://CRAN.R-project.org/package=statebins

Ryan, J. A. (2007). Defaults: Create global function defaults. Retrieved from https://CRAN.R-project.org/package=Defaults

Salganik, M. J. (2018). Bit by bit: Social research in the digital age. Princeton, NJ: Princeton University Press.

Sarkar, D. (2008). Lattice: Multivariate data visualization with r (New York). Springer.

Silge, J., & Robinson, D. (2017). Text mining with r. Sebastopol, CA: O’Reilly.

Slowikowski, K. (2017). Ggrepel: Repulsive text and label geoms for ’ggplot2’. Retrieved from https://CRAN.R-project.org/package=ggrepel

Spinu, V., Grolemund, G., & Wickham, H. (2017). Lubridate: Make dealing with dates a little easier. Retrieved from https://CRAN.R-project.org/package=lubridate

Taub, A. (2016). How stable are democracies? “Warning signs are flashing red”. The New York Times.

Therneau, T. M. (2017). Survival: Survival analysis. Retrieved from https://CRAN.R-project.org/package=survival

Therneau, T., Atkinson, B., & Ripley, B. (2017). Rpart: Recursive partitioning and regression trees. Retrieved from https://CRAN.R-project.org/package=rpart

Treisman, A., & Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95, 15–48.

Tufte, E. R. (1978). Political control of the economy. Princeton: Princeton University Press.

Tufte, E. R. (1983). The visual display of quantitative information. Cheshire, CT: Graphics Press.

Tufte, E. R. (1990). Envisioning information. Cheshire, CT: Graphics Press.

Tufte, E. R. (1997). Visual explanations: Images and quantities, evidence and narrative. Cheshire, CT: Graphics Press.

Vanhove, J. (2016, November). What data patterns can lie behind a correlation coefficient?

Venables, W., & Ripley, B. (2002). Modern applied statistics with S (Fourth). New York: Springer.

Wainer, H. (1984). How to display data badly. American Statistician, 38, 137–147.

Walker, K. (2018). Analyzing the us census with r. Boca Raton, Florida: CRC Press.

Ware, C. (2008). Visual thinking for design. Waltham, MA: Morgan Kaufman.

Ware, C. (2013). Information visualization: Perception for design (Third edition). Waltham, MA: Morgan Kaufman.

Wehrwein, A. (2017, April). Plot inspiration via fivethirtyeight. Retrieved from http://www.austinwehrwein.com/data-visualization/plot-inspiration-via-fivethirtyeight/

Wickham, H. (2014). Tidy data. Journal of Statistical Software, 59(1), 1–23. https://doi.org/10.18637/jss.v059.i10

Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis. New York: Springer.

Wickham, H. (2017a). Stringr: Simple, consistent wrappers for common string operations. Retrieved from https://CRAN.R-project.org/package=stringr

Wickham, H. (2017b). Testthat: Unit testing for r. Retrieved from https://CRAN.R-project.org/package=testthat

Wickham, H. (2017c). Tidyverse: Easily install and load the ’tidyverse’. Retrieved from https://CRAN.R-project.org/package=tidyverse

Wickham, H., & Chang, W. (2017). Devtools: Tools to make developing r packages easier. Retrieved from https://CRAN.R-project.org/package=devtools

Wickham, H., & Chang, W. (2018). Ggplot2: Create elegant data visualisations using the grammar of graphics.

Wickham, H., & Grolemund, G. (2016). R for data science. Sebastopbol, CA: O’Reilly.

Wickham, H., & Henry, L. (2017). Tidyr: Easily tidy data with ’spread()’ and ’gather()’ functions. Retrieved from https://CRAN.R-project.org/package=tidyr

Wickham, H., Francois, R., Henry, L., & Müller, K. (2017a). Dplyr: A grammar of data manipulation. Retrieved from https://CRAN.R-project.org/package=dplyr

Wickham, H., Hester, J., & Francois, R. (2017b). Readr: Read rectangular text data. Retrieved from https://CRAN.R-project.org/package=readr

Wilke, C. O. (2017). Ggridges: Ridgeline plots in ’ggplot2’. Retrieved from https://CRAN.R-project.org/package=ggridges

Wilkinson, L. (2005). The grammar of graphics (Second). New York: Springer.

Xie, Y. (2015). Dynamic documents with r and knitr (Second). New York: Chapman; Hall.

Xie, Y. (2017). Knitr: A general-purpose package for dynamic report generation in r. Retrieved from https://yihui.name/knitr/

Zeileis, A., & Hornik, K. (2006). Choosing color palettes for statistical graphics (Research Report Series / Department of Statistics and Mathematics No. 41). Vienna: WU Vienna University of Economics; Business. Retrieved from http://epub.wu.ac.at/1404/